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Abstract A nonsimilar boundary layer analysis is presented for the problem of mixed
convection in power-law type non-Newtonian fluids along a vertical wedge with variable wall
temperature distribution. The mixed convection regime is divided into two regions, namely, the
forced convection dominated regime and the free convection dominated regime. The two solutions
are matched. Numerical results are presented for the details of the velocity and temperature fields.
A discussion is provided for the effect of viscosity index on the surface heat transfer rate.

Nomenclature
f = dimensionless stream function
g = acceleration due to gravity
h = heat transfer coefficient
k = thermal conductivity
K = permeability for the porous medium
L = plate length
m = wedge flow parameter
n = viscosity index
Nu = Nusselt number
Pe = Peclet number
qw = wall heat flux
Ra = Rayleigh number
T = Temperature
u,v = velocity components in x and y

directions
U1 = free stream velocity
x,y = axial and normal coordinates

� = effective thermal diffusivity of porous
medium

� = volumetric coefficient of thermal
expansion


 = half-wedge angle
� = similarity variable
� = dimensionless temperature
� = kinematic viscosity
� = nonsimilar parameter
� = density of fluid
� = consistency index for viscosity
�w = wall shear stress
 = stream function
Subscripts
w = wall conditions
1 = free stream conditions

Introduction
The motivation for the problem studied in this paper was the numerous thermal
engineering applications such as geothermal systems, crude oil extraction,
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thermal insulation and ground water pollution. Cheng and Minkowycz (1977, pp.
2040-9) presented similarity solutions for free convective heat transfer from a
vertical plate in a fluid-saturated porous medium. Gorla and co-workers (Gorla
and Zinolabedini, 1987, pp. 26-30; Gorla and Tornabene, 1988, pp. 95-106) solved
the nonsimilar problem of free convective heat transfer from a vertical plate
embedded in a saturated porous medium with an arbitrarily varying surface
temperature or heat flux. The problem of combined convection from vertical
plates in porous media was studied by Minkowycz et al. (1985, pp. 349-59) and
Ranganathan and Viskanta (1984, pp. 305-17). Nakayama and Pop (1985, pp. 683-
97) presented similarity solutions for the free, forced and combined convection.
Hsieh et al. (1993, pp. 1485-93) derived nonsimilar solutions for combined
convection from vertical plates in porous media. Kumari and Gorla (1997, pp.
393-8) examined the combined convection along a non-isothermal wedge in a
porous medium. All these studies were concerned with Newtonian fluid flows. A
number of industrially important fluids including fossil fuels which may saturate
underground beds display non-Newtonian behavior. Non-Newtonian fluids
exhibit a nonlinear relationship between shear stress and shear rate.

Chen and Chen (1988, pp. 257-60) presented similarity solutions for free
convection of non-Newtonian fluids over vertical surfaces in porous media.
Nakayama and Koyama (1991, pp. 55-70) studied the natural convection over a
non-isothermal body of arbitrary shape embedded in a porous medium. Gorla
and co-workers (Kumari et al., 1997, pp. 34-7; Gorla and Kumari, 1999, 1996, pp.
55-64; Gorla et al., 1997a, pp. 319-34, 1997b, pp. 281-6; Kumari and Gorla, 1996,
pp. 157-66; Gorla and Takhar, 1997, pp. 596-608) have recently analyzed the
problems of mixed convection in non-Newtonian fluids along vertical and
horizontal plates in porous media.

The present work has been undertaken in order to analyze the mixed
convection from a vertical non-isothermal wedge embedded in non-Newtonian
fluid saturated porous media. The boundary condition of variable surface
temperature is treated in this paper. The power law model of Ostwald-de-
Waele, which is adequate for many non-Newtonian fluids, is considered here.
The governing equations are first transformed into a dimensionless form and
the resulting nonsimilar set of equations is solved by a finite difference method.
Numerical results for the velocity and temperature fields are presented.

Analysis
Let us consider the mixed convention in a porous medium from an
impermeable wedge, which is heated and has a variable wall temperature. The
properties of the fluid and the porous medium are assumed to be constant and
isotropic. The Darcy model is considered which is valid under conditions of
small pores of porous medium and flow velocity. Also, the slip velocity at the
wall is imposed, which has a smaller effect on the heat transfer results as the
distance from the leading edge increases. The axial and normal coordinates are
x and y, and the corresponding flow velocities are u and v respectively. Figure
1 shows the coordinate system and model of the flow. The gravitational
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acceleration g is acting downwards opposite to the normal coordinate y. The
governing equations under the Boussinesq and boundary layer
approximations are given by,

@ u

@ x
� @ v

@ y
� 0 �1�

un � Un
1 �

K

�
�gx��Tÿ T1� �2�

u
@T

@x
� v
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@y
� �

@2T

@y2
�3�

where gx � gCos�
�
In the above equations, T is the temperature of the wall, n is the viscosity

index, � is the density, K is the permeability of porous medium, � is the
volumetric coefficient of thermal expansion, � is the viscosity, � is the
equivalent thermal diffusivity of the porous medium. With power law variation
in wall temperature, the boundary conditions can be written as

y � 0 : v � 0 ; � T ÿ T1 � � Ax�

y � 1 : u � U1 ; T � T1
�4�

where A and � are prescribed constants. Note that � = 0 corresponds to the
case of uniform wall temperature.

A. Forced convection dominated regime
The continuity equation is automatically satisfied by defining a stream
function  (x,y) such that

u � @ 

@y
and v � ÿ @ 

@x

y

g

x
2γ

Figure 1.
Coordinate system and

flow model
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Proceeding with the analysis, we define the following transformations:

� � y

x
Pe1=2

x

 � � Pe1=2
x f��f ; ��

� f � Rax

Pex

� �n

� � T ÿ T1
Tw ÿ T1

Pex � U1 x

�

Rax � x

�

�Kgx��Tw

�

� �1=n

U1 � cxm

m � 
=��ÿ 
�

�5�

The governing equations and boundary conditions, equations (1) - (4), can then
be transformed into

�f 0�n � 1� �� �6�

�} ÿ � f 0 � � m� 1

2

� �
f �0 � �ÿm� � �f f 0

@�

@�f
ÿ �0

@f

@�f

�
�7�

m� 1

2

� �
f �f ; 0� � � � ÿ m� � �f

@f

@�f
�f ; 0� � � 0

or f �f ; 0� � � 0; � �f ; 0� � � 1 ; f 0 �f ; 1� � � 1 ; � �f ; 1
ÿ � � 0

�8�

The primes in the above equations denote partial differentiations with respect to �.
In the above system of equations, the dimensionless parameter �f is a

measure of the buoyancy effect on forced convection. The case of �f = 0
corresponds to pure forced convection. The limiting case of �f � 1 corresponds
to pure free convection region. The equations (6) - (8) cannot be solved for the
entire regime of mixed convection because of singularity at �f � 1. The above
system of equations is used to solve the region covered by �f � 0ÿ 1 to provide
the first half of the total solution of the mixed convection regime.

Some of the physical quantities of interest include the velocity components u
and v in the x and y directions and the local Nusselt number Nux = hx/k where
h = qw /[Tw (x)±T1�. They are given by

u � U1 f 0��f ; �� �9�
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v � ÿ �

x
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B. Free convection dominated regime
For buoyancy dominated regime the following dimensionless variables are
introduced in the transformation

� � y

x
Rax� �12 �n � Pex

Rax

� �n

�12�

 � � Rax� �12 f��n; �� � �n; �
ÿ � � Tÿ T1

Tw�x� ÿ T1

� �
�13�

Substituting equations (12) and (13) into the governing equations (1) - (4) leads to

f 0� �n� � � � �14�
�}� � � n

2n
f �0 ÿ � f 0 � � mÿ �� � �n f 0

@�

@�n
ÿ �0

@f

@�n

� �
�15�

�� n� �
2n

f �n; 0� � � mÿ �� ��n
@f

@�n
�n;0
ÿ � � 0 or f �; 0� � � 0; ���n; 0� � 1;

f 0 �n;1
ÿ � � �n ; � �n;1

ÿ � � 0 �16�
and the primes in equations (14)-(16) denote partial differentiations with respect
to �.

Note that the �n parameter here represents the forced flow effect on free
convection. The case of �n � 0 corresponds to pure free convection and the
limiting case of �n � 1 corresponds to pure forced convection. The above
system of equations (14)-(16) was solved over the region covered by �n � 0ÿ 1
to provide the other half of the solution for the entire mixed convection regime.

The velocity components u and v, the local friction factor and the local
Nusselt number for this case have the following expressions

u � �C x
�
n f �17�

v � ÿ�C
1
2 x

�ÿn
2n

�� n

2n
f � �mÿ ��� @f

@�
� �ÿ n
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� �
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Nux � ÿRa
1
2
x �
0 �n; 0
ÿ � �19�
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Numerical scheme
The numerical scheme to solve equations (6) and (7) adopted here is based on a
combination of the following concepts:

(a) The boundary conditions for � � 1 are replaced by

f 0 ��; �max� � 1; ���; �max� � 0 �20�
where �max is a sufficiently large value of � at which the boundary
conditions (8) are satisfied. �max varies with the value of n. In the present
work, a value of �max = 25 was checked to be sufficient for free stream
behavior.

(b) The two-dimensional domain of interest (�; �) is discretized with an
equispaced mesh in the �-direction and another equispaced mesh in the
�-direction.

(c) The partial derivatives with respect to � are evaluated by the second
order difference approximation.

(d) Two iteration loops based on the successive substitution are used
because of the nonlinearity of the equations.

(e) In each inner iteration loop, the value of � is fixed while each of the
equations (6) and (7) is solved as a linear second order boundary value
problem of ODE on the �-domain. The inner iteration is continued until
the nonlinear solution converges with a convergence criterion of 10±6 in
all cases for the fixed value of �.

(f) In the outer iteration loop, the value of � is advanced. The derivatives
with respect to � are updated after every outer iteration step.

In the inner iteration step, the finite difference approximation for equations (6)
and (7) is solved as a boundary value problem. The numerical results are
affected by the number of mesh points in both directions. To obtain accurate
results, a mesh sensitivity study was performed. After some trials, in the �-
direction 190 mesh points were chosen whereas in the �-direction 41 mesh
points were used. The tolerance for convergence was 10±6. Increasing the mesh
points to a larger value led to identical results.

Results and discussion
Numerical results for �0��; 0� are tabulated in Tables I-III. In order to assess the
accuracy of the numerical results, we compare our results for Newtonian fluid

Table Ia.
Comparison of values
of �

0 ��F; 0� for n = 1,
m = 0 and �F = 0

�0��F ; 0�
� Present results Hsieh et al.

0.0 0.56414 0.5642
0.5 0.88602 0.8862
1.0 1.12812 1.1284
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(n = 1) with those of Hsieh et al. (1993, pp. 1485-93). The agreement between the
two is within 0.01 percent difference. Therefore, the present results are highly
accurate.

The velocity and temperature profiles are displayed in Figure 2
for prescribed values of m, n, � and �f. The thermal boundary layer thicknesses
decrease as �f increases. The slip velocity at the porous surface
f 0��; 0� decreases as the viscosity index n increases. The surface temperature
gradient and hence the heat transfer rate increases as �f increases. The
slip velocity at the wall increases as �f increases. Figure 3 displays the variation
of Nusselt number with �f for n ranging from 0.5-1.5. It is observed that
the solutions for the forced convection dominated regime and the free

Table II.
Values of ÿ�0 ��F; 0�

and ÿ�0 ��N; 0� for
� = 0.5 and m = 1/3

ÿ�0 ��F; 0�
�F n = 0.5 n = 1.0 n = 1.5

0.0 0.94151 0.94151 0.94151
0.1 1.01001 0.97336 0.96135
0.2 1.07876 1.00412 0.98033
0.3 1.14770 1.03391 0.99854
0.4 1.21681 1.06281 1.01605
0.5 1.28607 1.09091 1.03294
0.6 1.35547 1.11826 1.04926
0.7 1.42497 1.14492 1.06505
0.8 1.49457 1.17095 1.08036
0.9 1.56426 1.19639 1.09522
1.0 1.63403 1.22127 1.10966

ÿ�0��N; 0�
�N n = 0.5 n = 1.0 n = 1.5

1.0 1.63402 1.22119 1.10967
0.9 1.58273 1.17753 1.08648
0.8 1.49572 1.14247 1.06224
0.7 1.44301 1.10557 1.03680
0.6 1.39554 1.06528 1.01001
0.5 1.35444 1.02270 0.98165
0.4 1.32004 0.97810 0.95149
0.3 1.29278 0.93134 0.91918
0.2 1.27307 0.88220 0.88429
0.1 1.26117 0.83043 0.84618
0.0 1.25718 0.77584 0.80413

Table Ib.
Comparison of values
of �

0 ��N; 0� for n = 1,
m = 0 and �N � 0

�
0 ��N; o�

� Present results Hsieh et al.

0.0 0.44362 0.4438
0.5 0.76999 0.7704
1.0 0.99999 1.0000
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convection dominated regime meet and match over the mixed convection
regime. As � and �f increase, the Nusselt number increases for a given n.
As n increases, the heat transfer rate parameter decreases. As shown in
Table III, the Nusselt number increases as the wedge angle parameter m
increases.

Concluding remarks
In this paper, we have presented a boundary layer analysis for the mixed
convection in non-Newtonian fluids along a vertical wedge embedded in fluid-
saturated porous medium. The flow regime was divided into forced convection
dominated and natural convection dominated regions. In the forced convection
dominated region, �f � �Rax

Pex
�n characterizes the buoyancy effect on forced

convection whereas �n � �Pex

Pax
�n is a measure of the effect of forced flow on free

convection. Numerical solutions using a finite difference scheme were obtained
for the flow and temperature fields for several values of the wedge angle
parameter, m, the exponent � for the surface temperature variation and the
viscosity index, n.

Table III.
Values of ÿ�0 ��F; 0�
and ÿ�0 ��N; 0� for n =
0.5 and � = 0.5

ÿ�0 ��F; 0�
�F m = 0 m = 1/3 m = 1/2 m = 1

0.0 0.88602 0.94151 0.96833 1.04522
0.1 0.95462 1.01001 1.03667 1.11274
0.2 1.02342 1.07876 1.10527 1.18062
0.3 1.09239 1.14770 1.17410 1.24878
0.4 1.16151 1.21681 1.24311 1.31719
0.5 1.23076 1.28607 1.31227 1.38580
0.6 1.30014 1.35547 1.38158 1.45457
0.7 1.36962 1.42497 1.45100 1.52349
0.8 1.43921 1.49457 1.52052 1.59253
0.9 1.50889 1.56426 1.59013 1.66166
1.0 1.57866 1.63403 1.65982 1.73088

ÿ�0 ��N; 0�
�N m = 0 m = 1/3 m = 1/2 m = 1

1.0 1.57864 1.63402 1.65980 1.73088
0.9 1.57745 1.58273 1.58723 1.62745
0.8 1.48216 1.49572 1.47415 1.52407
0.7 1.42553 1.44301 1.37248 1.42077
0.6 1.37752 1.39554 1.27495 1.31761
0.5 1.33852 1.35444 1.17892 1.21468
0.4 1.30811 1.32004 1.08359 1.11220
0.3 1.28575 1.29278 0.98909 1.01054
0.2 1.27062 1.27307 0.89600 0.91034
0.1 1.26190 1.26117 0.80525 0.81244
0.0 1.25904 1.25718 0.71651 0.71598
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Figure 2.
Velocity and

temperature profiles for
n = 0.5, � = 0.5 and

m = 1/3
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